UV-Vis spectroscopy

Basic theory

Dr. Davide Ferri Empa, Lab. for Solid State Chemistry and Catalysis 2044 823 46 09 davide.ferri@empa.ch

Importance of UV-Vis in catalysis

Number of publications containing *in situ*, *catalysis*, and respective method Source: ISI Web of Knowledge (Sept. 2008)

The electromagnetic spectrum

source: Andor.com

The 'energy' unit

- Typically, the wavelength (nm) is used
- the distance over which the wave's shape repeats

 $x \text{ nm} = 10'000'000 / x \text{ cm}^{-1}$ $y \text{ cm}^{-1} = 10'000'000 / y \text{ nm}$

Is UV-vis spectroscopy popular?

pros

- economic
- non-invasive (fiber optics allowed)
- versatile (e.g. solid, liquid, gas)
- extremely sensitive (concentration)

cons

- Broad signals (resolution)
- Time resolution (S/N)

What is UV-vis spectroscopy?

- Use of ultraviolet and visible radiation
- Electron excitation to excited electronic level (electronic transitions)
- Identifies functional groups (-(C=C)_n-, -C=O, -C=N, etc.)
- Access to molecular structure and oxidation state

Electronic transitions

high e⁻ jump \rightarrow high E high E \rightarrow high v

high $\nu \rightarrow \text{low } \lambda$

Electronic transitions

 $\sigma \rightarrow \sigma^*$ high *E*, low λ (<200 nm)

n→σ* 150-250 nm, weak n→π* **200-700 nm**, weak

π→π* **200-700 nm**, intense Condition to absorb light (200-800 nm):

 π and/or *n* orbitals

CHROMOPHORE

Conjugation effect

Complementary colours

If a colour is absorbed by white light, what the eye detects by mixing all other wavelengths is its complementary colour

UV-vis spectra of transition metal complexes originate from

Electronic *d*-*d* transitions

d-d transitions: Cu(H₂O)₆²⁺

- Yellow light is absorbed and the Cu²⁺ solution is coloured in blue (ca. 800 nm)
- The greater Δ , the greater the *E* needed to promote the e⁻, and the shorter λ
- Δ depends on the nature of ligand, $\Delta_{NH3} > \Delta_{H2O}$

TM(H₂O)₆ⁿ⁺

d-d transitions: $\varepsilon_{max} = 1 - 100 \text{ Lmol}^{-1}\text{cm}^{-1}$, weak

d-d transitions: factors governing magnitude of Δ

Oxidation state of metal ion

Δ increases with increasing ionic charge on metal ion

Nature of metal ion

• Δ increases in the order 3d < 4d < 5d

Number and geometry of ligands

Nature of ligands

spectrochemical series

 $I^{-} < Br^{-} < S^{2^{-}} < SCN^{-} < CI^{-} < NO_{3}^{-} < N_{3}^{-} < F^{-} < OH^{-} < C_{2}O_{4}^{2^{-}} < H_{2}O < NCS^{-} < CH_{3}CN < py < NH_{3} < en < bipy < phen < NO_{2}^{-} < PPh_{3} < CN^{-} < CO$

d-d transitions: selection rules

spin rule:

$$\Delta S = 0$$

on promotion, no change of spin

Laporte's rule:

$$\Delta I = \pm 1$$

d-*d* transition of complexes with center of simmetry are forbidden

Because of selection rules, colours are faint (ε = 20 Lmol⁻¹cm⁻¹).

UV-vis spectra of transition metal complexes originate from

Electronic *d*-*d* transitions

Charge transfer

Charge transfer complex

- no selection rules \rightarrow intense colours (ϵ =50'000 Lmol⁻¹cm⁻¹, strong)
- Association of 2 or more molecules in which a fraction of electronic charge is transferred between the molecular entities. The resulting electrostatic attraction provides a stabilizing force for the molecular complex
- **Electron donor**: source molecule
- **Electron acceptor**: receiving species
- CT much weaker than covalent forces
- Ligand field theory (LFT), based on MO
 - Metal-to-ligand transfer (MLCT)
 - Ligand-to-metal transfer (LMCT)

Ligand field theory (LFT)

- LMCT
 - ligand with high energy lone pair
 - or, metal with low lying empty orbitals
 - high oxidation state (laso d⁰)
 - M-L strengthened
- MLCT
 - Iigands with low lying π^* orbitals (CO, CN⁻, SCN⁻)
 - Iow oxidation state (high energy d orbitals)
 - M-L strengthened, π bond of L weakened

CO adsorption on precious metals

UV-Vis spectroscopy

Instrumentation Examples for catalysis

Dr. Davide Ferri Empa, Lab. for Solid State Chemistry and Catalysis 2044 823 46 09 davide.ferri@empa.ch

Instrumentation

Dispersive instruments

Measurement geometry:

- transmission
- diffuse reflectance

double beam spectrometer

In situ instrumentation

- coupling to reactors
- Ino NIR (no optical fiber > 1100 nm)
 - long term reproducibility (single beam)
 - Limited high temperature (ca. 600℃)

- 20% of light is collected

- Iong meas. time
 - spectral collection (λ after λ)

- gas flows, pressure, vacuum

 \rightarrow different parts of spectrum do not represent same reaction time!!!

Weckhuysen, Chem. Commun. (2002) 97

 \mathbf{V}

In situ instrumentation

Integration sphere

Determination of oxidation state: 0.1 wt% Crⁿ⁺/Al₂O₃

Compound	Coordination geometry and oxidation state	Absorption bands (nm) ^a	Color
K ₂ CrO ₄ (solution)	T_d , Cr^{6+}	440 (sh, vw), 370 (s), 275 (s)	Yellow
K ₂ CrO ₄ (solid)	T_d , Cr^{6+}	459 (s), 340 (s), 265 (s), 229 (s)	Yellow
K ₂ Cr ₂ O ₇ (solution)	T_d , Cr^{6+}	440 (w), 352 (s), 255 (s)	Orange
K ₂ Cr ₂ O ₇ (solid)	T_d , Cr^{6+}	526 (s, br), 332 (s), 262 (s), 229 (s)	Orange-red
Cr(NO ₃) ₃ .9H ₂ O (solution)	O_h , Cr^{3+}	575 (s), 410 (s), 303 (s)	Green
Cr(NO ₃) ₃ .9H ₂ O (solid)	Dist O _h , Cr ³⁺	575 (s), 410 (s), 304 (s), 263 (sh)	Green
$Cr(H_2O)_6^{2+}$ (solution)	$O_{\rm h}, {\rm Cr}^{2+}$	769 (s)	Blue
K ₂ CrCl ₄ (solid)	Distorted T _d , Cr ²⁺	1430 (s)	Blue
Cr_2O_3 (solid)	Distorted O _h , Cr ³⁺	714 (sh), 645 (sh), 595 (s), 461 (s), 351 (s), 274 (s)	Green

^as: strong; m: medium; w: weak; vw: very weak; sh: shoulder; br: broad.

Weckhuysen et al., Catal. Today 49 (1999) 441

Determination of oxidation state: 0.1 wt% Crⁿ⁺/Al₂O₃

Determination of oxidation state: 0.2 wt% Crⁿ⁺/SiO₂

Weckhuysen et al., Catal. Today 49 (1999) 441

Determination of oxidation state: 0.5 wt% Crⁿ⁺/SiO₂

Determination of oxidation state: 4 wt% Crⁿ⁺/Al₂O₃

$v_{s}(Cr = O)$ xCr-Al₂O₃ HAADF-STEM 888 cm⁻¹ Raman 945 cm⁻¹ $\delta(CrO_4)$ 374 cm⁻¹ 990 cm⁻¹ 868 cm⁻¹ 1002 cm⁻¹ wt.% a 10 b 1Cr-SBA15 5Cr-SBA15 5 1 0.5 600 800 200 400 1000 1200 Raman Shift / cm⁻¹ 1Cr-Al₂O₃ 5Cr-Al₂O₃ 100 nm XRD 5Cr-SBA15 5Cr-Al₂O₃ 10Cr-Al,O Intensity / a.u. Cu 5Cr-Al₂O₃ Cu Cu 1Cr-Al₂O₃ Cr Cr Cu 6 8 2 6 8 0 2 4 10 4 10 xCr-Al₂O₃ 0.5Cr-Al,O₃ energy (KeV) energy (KeV)

30

20

40

50

20/degree

60

70

80

Comparison of techniques: x wt% Crⁿ⁺/support

Santhosh Kumar et al., J. Catal. 261 (2009) 116

Brückner et al., Catal. Today 113 (2006) 16

Reactivity of V/TiO₂ after oxidative treatment

Brückner et al., Catal. Today 113 (2006) 16

Determination of speciation: Fe species in Fe-ZSM5

